Getting industrial memory right

Getting industrial memory right

What are the costs and risks associated with overlooking flash storage technology in industrial applications? New Electronics investigates.

A growing number of industrial OEMs are seeing value in optimizing the right flash technology to ensure host architecture compatibility while meeting application workload requirements

During the design process, manufacturers of industrial products undergo long engagement processes with multiple part suppliers, the purpose of which is to ensure that each embedded part will not only work for the application, but also meet the workload and environmental requirements in the field.

However, supplier engagements can be lengthy and complex. As a result, OEMs may opt to purchase off-the-shelf parts, particularly when the part is perceived to be a 'commodity' item. This is often the case with flash memory, which is normally selected based on specifications such as type of flash, memory capacity and form factor.

Because flash memory is widely available in a variety of form factors for consumer electronics, many OEMs assume they can proceed without a customized solution. However, in doing so, OEMs may overlook considerations such as workload (the frequency of reading and writing large amounts of data to memory), power management issues (dirty power, power cycling, power failure) and environmental conditions (temperature, vibration).

These factors can lead to data corruption and other errors in the field, while reducing the reliability and lifespan of the flash storage. For industrial OEM products, which can have a lifecycle of 3-5 years or longer, compared to 6-18 months for consumer applications, this can cause failures in the field and reduce the overall life of their product.

"Many industrial OEMs purchase flash storage devices over the internet only to discover at the launch there were unexpected issues due to inaccurate assumptions about the environment and workload requirements," explains Tony Diaz, Product Manager for Delkin Devices, a supplier of non-volatile flash storage solutions in a variety of SSD, card and module solutions.

This can result in severe consequences for users. In the transportation industry, for example, the unexpected failure of mission critical data may lead to the compromising of safety features that drivers rely upon to prevent accidents. In manufacturing automation, unexpected data device failures can cause machinery to malfunction, potentially leading to a costly and disruptive cessation of production.

Given the critical role in storing mission-critical data, Diaz says the majority of industrial flash storage solutions require some level of customization to adequately meet workload requirements in real-world industrial scenarios.

Workload demands

All flash storage has a finite life, depending on how well it is managed and the workload requirements. In order to optimize and extend the life of a flash storage device, careful consideration must be given to how data is written to the device.

Writing to flash is the process of prepping the blocks of flash and then programming new data to the flash blocks. However, new data cannot be saved to flash until the old data is first erased. Due to the nature of flash storage, only a finite number of programming and erasing cycles can be performed before wear renders it unreliable to store data. In addition, some flash media is not used evenly, further reducing the life of the device.

Fortunately, there are options to extend the life of a flash device, including reducing unnecessary copying of files or downloading of data, consolidating writes, wear leveling techniques and even selecting whether the data is written sequentially or randomly.

"If an OEM misjudges or misunderstands the workload requirements, there are implications for the storage," says Diaz, "it could be as simple as unexplained errors in the field, or it could be a situation where they are wearing out the flash memory a lot faster than they realize.”

An important flash storage customization option involves mechanical ruggedness. Is the application subjected to unusual amounts of vibration? Does the typical operating environment exceed even standard industrial storage parameters?

Although industrial flash storage is designed to be rugged, different applications have different operating requirements. Customizing the mechanical ruggedness of the storage can alleviate concerns about failures associated with operating conditions.

0 0 votes
Article Rating
Subscribe
Notify of
guest
0 Comments
Inline Feedbacks
View all comments
0
Would love your thoughts, please comment.x
()
x